

 Navigation

 	
 index

 	chicago latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/chicago/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/chicago/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	chicago latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 UseCase.html

 Navigation

 		
 index

 		chicago latest documentation »

		Chicago DB Use Cases

** Key Value Store

*** Write Guarantees

**** Always available writes

**** Very low latency writes

***** Time from issuing write request to ack from N quorum nodes is less than 10ms

**** Always replicated, if you receive an ack it means the write was replicated to N quorum nodes

**** Failure modes somewhat understood, recovery still lacking

*** Read Guarantees

**** If at least 1 of the N quorum nodes is available you will get a response

**** If none of the N quorum nodes is available you will get a failure

**** If you wrote the key and received a successful response, the value will be available immediately

*** Replication Guarantees

**** For a given quorum setting, key/values will be written to N quorum nodes.

**** If a node joins/leaves the cluster, the key/values in the cluster will be redistributed across the remaining nodes. Such that each key/value will exist on N quorum nodes.

**** Redistribution of Data
As a client this means that if there are N nodes that have my
key/value and one of them leaves the cluster, N-1 nodes will have
my key/value until such time that the key/values are
redistributed and once again there are N nodes with my key/value

** Streaming Time Series

		Logging
		Writes
		System level logs and PPFE logs needs to be published to chicago through a client.

		Writes need to be asynchronous, and best effort based.

		Each write operation should not be more than 10 ms(Not sure if that is achievable).

		incremental reads by either timestamp / offset / byte size , do not resend logs previously piped to kafka

		Restrict size of logs being uploaded to kafka via chicago in order of < 20 MB per update to avoid clogging both from host -> chicago and chicago -> kafka

		Chicago module should have HEADER in logs for each task being logged

		Create consistent format for logging

		Reads
		Consumer from chicago should be able to read messages based on a topic name in milli seconds.

		Chicago should upload to existing kafka topic

		consistent updates and format with HEADER on updates for each update

		Consumer should be able to filter the kafka topic with task information

		PPFE
		Block DDOS attach
		In a scenario when a particular IP is sending millions of requests in short duration of time, PPFE needs to block that IP address by re-using analysis from Chicago stream logs.

		The logs sent to Chicago needs to be consumed by a consumer in order of milli seconds.

		Block bad requests
		In case certain bad requets are sent to PPFE, which can be parsed in certain way, we need to send the logs to Chicago.

		By a stream consumer, algorithms can detect such requests and make decisions to block the requests without manual intervention.

		ProdNG
		Accomodate custom requirements to Agent
		TODO grab big brother use cases

		TODO grab Zabbix use cases

		Chicago module to update logs

		Create source list and format patterns by application / system log monitoring / custom tasks

		Accomodate custom operations [adhoc scripts / app logs]

		Agent should be able to run scripts on demand and channel logs via chicago to Kafka topic

		Log retention time

		Report Health

		Capture all stacktraces

		Memory / cpu report parameters

		log zombie processes

		machine health reporting
a. space
b. load
c. free memory
d. app running stats

		sshd logs

		seperate logging filter from ProdNG for kafka topic

		Identify delay in logs being consumed

		Alerting on chicago server(s)

		break updates into shards for topics / breakdown for filter

		Log rotation and reporting

		init.d service monitoring

		Create chicago module for transferring data from Host to chicago

		Kafka Setup
		Cluster Availability and maintenance

Requirements :

* Very Fast asynchronous writes.
* Ordered(Not sure if we need ordering) Reads based on a topic/column family as soon as they are wriiten.
* Consumers to tail the logs from Chicago and push to to respective topics in Kafka for all other cliets like splunk,dashboard to consume.
* Replication of messages to configurable no. of brokers
* Fault tolerant - Writes and reads are not affected by a node in cluster going down as long as the quorom is maintained.
* Retention of messaged in RocksDB based on size or time period or as soon as they are pushed to Kafka.
* configure size of logs being updated by interval and size of logs
* logs should be truncated after each update and rolled into old
* offset filter for host / topic
* offset filter for big brother / zabbix

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

search.html

 Navigation

 		
 index

 		chicago latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

README.html

 Navigation

 		
 index

 		chicago latest documentation »

Chicago

[image: CircleCI] [https://circleci.com/gh/xjdr/chicago]

[image: CoverageStatus] [https://coveralls.io/github/xjdr/chicago?branch=master]

High performance distributed K/V store, built on xio [https://github.com/xjdr/xio]
and rocksdb [https://github.com/facebook/rocksdb]. Chicago was written for use in our
observability stack for real(ish) time stats and alerting. Chicago was designed to always be
available for writes and have consistent write times regardless

All data is encrypted on the wire by default but that feature can be disabled if you are either
in a locally trusted env, if performance is more important that security (you are probably wrong on this one),
if your data is already encrypted by another application. Snappy compression can also be enabled if packet size
over the wire is more important than cpu usage.

Chicago is horizontally scalable to N nodes but using a RendezvousHash [https://en.wikipedia.org/wiki/Rendezvous_hashing]

Chicago is optimized for low latency, high volume writes. Replicated writes should be able to happen in the
3 - 5ms range at millions of objects a second (with the appropriate configuration) + network latency. Chicago
can be implemented for local DC writes and cross DC reads by configuring the appropriate “Views” for the client.

Replications

Write Replication

By default, Chicago will write your data to 3 servers for each request in parallel. Each request is hashed and checksummed
upon encoding, over the wire, on decoding, on DB write and on db read. This might seem excessive but Chicago enforces
correctness on write vs error correction on read. Chicago will only ack the client if all 3 replicas are successfully written.
If any of the 3 write requests return unsuccessful, the write will be retried (to a maximum configurable count) until successful
or the retry count is exceeded. If the retry count is exceeded, the keys will be deleted from the replica set and the operation
will return unsuccessful (TODO).

Read Replication

With the assumption that correctness is enforced on write, read requests are sent out to each node in the replica set
simultaneously and the first successful response is returned. Reads should be successful as long as one of the nodes in
the replica set is available.

Key re-balancing on Node addition or Removal

Any time a node is added or removed, each server will perform an out of band operation to rebalance its keys. To accomplish this,
each server will read all the keys from its local db, calculate the hash for the new node list (the view) and then redistribute the
keys as appropriate. The strategy for replica rebalancing is configurable, but by default keys will be re-written by each node as
is it calculated in the hash. The trade off here is additional write requests to ensure correctness and durability. Other tradeoffs
can be configured via replication strategies depending on your use case (TODO).

Views

A view is a list of nodes kept in zookpeer for which the client will perform the local hash to attempt to set or
retrieve a key. In it’s simplest form the client receives a single view for reads and writes. For local quorum,
cross dc replication, or whatever use case your heart desires, you can customize views (and thus the subsequent hash ring)
for a particular application (TODO).

This work is heavily inspired by Twitter’s Manhattan
https://blog.twitter.com/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
and
https://blog.twitter.com/2016/observability-at-twitter-technical-overview-part-i

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

